Application of Matrix Notation for the Analysis of Power Changes in a 3‑phase Circuit

Main Article Content

Lesław Ładniak


Using the matrix notation for voltages and currents of a 3-phase system, a description of changing the instantaneous power on terminals of electric circuit has been offered as a third rank matrix. As a result of the power matrix’ decomposition into a symmetric matrix and an antisymmetric matrix and upon defining norms for these matrices the state of the 3-phase circuit can be clearly determined.

Article Details

How to Cite
Lesław Ładniak. (2016). Application of Matrix Notation for the Analysis of Power Changes in a 3‑phase Circuit. Acta Energetica, (02), 149–155. Retrieved from


Buchholz F., Die Drehstrom‐

Scheinleistung ein ungleichmessiger

Belastung drei Zweige, Licht und

Kraft 1922, No. 2, s. 9–11.

Budeanu C., Puissances Reactives et

Fictives, Institut Romain de l’Energie,

Editura IPE, Bucharest 1927.

Fryze S., Moc czynna, bierna i pozorna

w obwodach o przebiegach odkształconych

prądu i napięcia, Przegląd

Elektrotechniczny 1931, nr 7, s. 193–203,

nr 8, s. 225–234.

Shepherd W., Zakikhani P., Suggested

Definition of Reactive Power

for Nonsinusoidal Systems, Proc. IEE

, No. 9, s. 1361–1362.

Depenbrock M., Wirk-und Blindleistung,

ETG-Fachtagung Blindleistung, Aachen

Akagi H., Nabae Y., The p-q theory in

three-phase systems under nonsinusoidal

conditions, Eur. Trans. Elect. Power 1993,

Vol. 3, No. 1, s. 27–31.

Nabae A., New definition of instantaneous

active-reactive current and power

based on instantaneous space vectors on

polar coordinates in three-phase circuits,

IEEE Trans. Power Delivery 1996, Vol. 11,

s. 1238–1243.

Czarnecki L.S., Energy flow and power

phenomena in electrical circuits: illusions

and reality, Archiv fur Elektrotechnik 1999,

No. 4, s. 10–15.