Structural and Transportation Properties of Strontium Titanate Composites with Ion Conductive Oxides

Main Article Content

Beata Bochentyn

Abstract

This paper has been written based on the author’s doctoral dissertation “Structural and transportation properties of strontium and titanate composites with ion conductive oxides”, prepared under the supervision of Prof. Dr. Hab. Eng. Bogusław Kusz at the Department of Solid State Physics of Gdańsk University of Technology. It reports the idea of the thesis and conclusions from the study. Niobium doped strontium titanate (Sr(Ti,Nb)O3) composites with selected ion conductive oxides (yttrium oxide-stabilized zirconium oxide YSZ and cerium oxide CeO2) were developed for the dissertation and their properties examined.. It was shown that Sr(Ti,Nb)O3-YSZ composite as the anode in an oxide fuel cell leads to its improved performance compared to a cell with a singlephase Sr(Ti,Nb)O3 anode. Microscopic observation confirmed that Sr(Ti,Nb)O3-YSZ composite as the functional layer between a Sr(Ti,Nb)O3 anode and YSZ electrolyte mitigates the problem of the composite anode’s delamination from the electrolyte surface. It was also shown that an appropriate modification of the Sr(Ti,Nb)O3-YSZ composite anode surface structure by infusing the process of hydrogen’s electrochemical oxidation with a catalyst (e.g. with nickel) can lead to further improvement of the fuel cell performance.

Article Details

How to Cite
Beata Bochentyn. (2016). Structural and Transportation Properties of Strontium Titanate Composites with Ion Conductive Oxides. Acta Energetica, (02), 20–33. https://doi.org/10.52710/ae.372
Section
Articles

References

Junxi J. i in., Performance comparison of three solid oxide fuel cell power systems, International Journal of Energy Research 2013, nr 37, s. 1821–1830.

Karczewski J. i in. Electrical and structural properties of Nb-doped SrTiO3, Journal of Electroceramics 2010, nr 24, s. 326–330.

Costamagna P., Costa P., Antonucci V., Micro-modelling of solid oxide fuel cell electrodes, Electrochimica Acta 1998, nr 43, s. 375–394.

Deseure J., Bultel Y., Dessemond L., Siebert E., Theoretical optimisation of a SOFC composite cathode, Electrochimica Acta 2005, nr 50, s. 2037–2046

Schneider L.C.R. i in., Percolation effects in functionally graded SOFC electrodes, Electrochimica Acta 2007, nr 52, s. 3190–3198.

Sunde S., Calculation of Conductivity and Polarization Resistance of Composite SOFC Electrodes from Random Resistor Networks, Journal of the Electrochemical Society 1995, nr 142, L50–L52.

Martinez A.S., Brouwer J., Percolation modeling investigation of TPB formation in a solid oxide fuel cell electrode-electrolyte | Acta Energetica 2/27 (2016) | translation 20–27 33 interface, Electrochimica Acta 2008, nr 53, s. 3597–3609.

Sasaki K. i in., Microstructure-property relations of solid oxide fuel cell cathodes and current collectors – Cathodic polarization and ohmic resistance, Journal of the Electrochemical Society 1996, nr 143, s. 530–543.

Heuveln F.H. van, Vanberkel F.P.F., Huijsmans I.P.P., High Temperature Electrochemical Behavior of Fast Ion and Mixed Conductors, Proceedings of the 14th Riso International Symposium on Material Science, 1993, s. 53.

Ostergard M.J.L. i in., Manganite-zirconia composite cathodes for SOFC: Influence of structure and composition, Electrochimica Acta 1995, nr 40, s. 1971–1981.

Juhl M. i in., Performance/structure correlation for composite SOFC cathodes, Journal of Power Sources 1996, nr 61, s. 173–181.

Wilson J.R. i in., Three Dimensional Reconstruction of a Solid Oxide Fuel Cell Anode, Nature Materials, 2006, s. 541–544.

Dusastre V., Kilner J.A., Optimisation of composite cathodes for intermediate temperature SOFC applications, Solid State Ionics 1996, nr 126, s. 163–174.

Tietz F., Buchkremer H.-P., Stover D., Components manufacturing for solid oxide fuel cells, Solid State Ionics 2002, nr 152/153, s. 373–381.

Savignat S.B., Chiron M., Barthet C., Tape casting of new electrolyte and anode materials for SOFCs operated at intermediate temperature, Journal of the European Ceramic Society 2007, nr 27, s. 673–678.

Li C.-J., Li C.-X., Wang M., Effect of Spray Parameters on the Electrical Conductivity of Plasma-Sprayed LA1-xSRxMnO3 coating for the cathode of SOFCs, Surface & Coatings Technology 2005, nr 198, s. 278–282.

Ge X. i in., Screen-printed thin YSZ films used as electrolytes for solid oxide fuel cells, Journal of Power Sources 2006, nr 159, s. 1048–1050. 18. Zheng R., A study of Ni + 8YSZ/8YSZ/ La0.6Sr0.4CoO3−δ ITSOFC fabricated by atmospheric plasma spraying, Journal of Power Sources 2004, nr 140, s. 217–225. 19. Dieten V.E.J. van, Schoonman J., Thin film techniques for solid oxide fuel cells, Solid State Ionics 1991, nr 57, s. 141–145. 20. Wang H.B. i in., Aerosol-assisted MOCVD deposition of YDC thin films on (NiO + YDC) substrates, Materials Research Bulletin 2000, nr 35, s. 2363–2370. 21. Meng G., Application of novel aerosolassisted chemical vapor deposition techniques for SOFC thin films, Solid State Ionics 2004, nr 175, s. 29–34. 22. Shiratori Y. i in., YSZ-MgO composite electrolyte with adjusted thermal expansion coefficient to other SOFC components, Solid State Ionics 2003, nr 164, s. 27–33.

Mogensen M., Composite Electrodes in Solid Oxide Fuel Cells and Similar Solid State Devices, Journal of Electroceramics 2000, nr 5, s. 141–152.

Kenjo T., Nishiya M., LaMnO3 air cathodes containing ZrO2 electrolyte for high temperature Solid Oxide Fuel Cell, Solid State Ionics 1992, nr 57, s. 295–302.

Hart N.T., Functionally graded composite cathodes for solid oxide fuel cells, Journal of Power Sources 2002, nr 106, s. 42–50.

Chen D., Combined micro-scale and macro-scale modeling of the composite electrode of a solid oxide fuel cell, Journal of Power Sources 2010, nr 195, s. 6598–6610.

Kurokawa H., Y-doped SrTiO3 based sulfur tolerant anode for Solid Oxide Fuel Cells, Journal of Power Sources 2007, nr 164, s. 510–518.

Karczewski J. i in., Electrical properties of Y0.08Sr0.92Ti0.92Nb0.08O3 after reduction in different reducing conditions, Journal of Alloys and Compounds, 2009, nr 473, s. 496–499.

Huang X., Effect of fabrication parameters on the electrical conductivity of YxSr1-xTiO3 for anode materials, Journal of Physics and Chemistry of Solids 2006, nr 67, s. 2609–2613.

Hashimoto S., Conductivity and expansion at high temperature in Sr0,7La0,3TiO3-δ prepared under reducing atmosphere, Journal of Electroceramics 2006, nr 16, s. 103–107.

Blennow P., Defect and electrical transport properties of Nb-doped SrTiO3, Solid State Ionics 2008, nr 179, s. 2047–205.

Blennow P., Electrochemical characterization and redox behavior of Nb-doped SrTiO3, Solid State Ionics 2009, nr 180, s. 63–70.

Horikiri F., Iizawa N., Han L.Q., Defect equilibrium and electron transport in the bulk of single crystal SrTi1-xNbxO3 (x = 0.01, 0.001, 0.0002), Solid State Ionics 2008, nr 179, s. 2335–2344.

Ahn K. i in., A support layer for solid oxide fuel cells, Ceramics International 2007, nr 33, s. 1065–1070.

He H., Characterization of YSZ-YST composites for SOFC anodes, Solid State Ionics 2004, nr 175, s. 171–176.

Gross M.D. i in., Redox stability of SrNbxTi1-xO3-YSZ for use in SOFC anodes, Journal of The Electrochemical Society 2009, nr 156 (4), B540-B545.

Ma Q. i in., Y-substituted SrTiO3–YSZ composites as anode materials for solid oxide fuel cells: Interaction between SYT and YSZ, Journal of Power Sources 2010, nr 195, s. 1920–1925.

Fu Q. i in., An efficient ceramic-based anode for solid oxide fuel cells, Journal of Power Sources 2007, nr 171, s. 663–669.

Sun X. i in., Evaluation of Sr0.88Y0.08TiO3– CeO2 as composite anode for solid oxide fuel cells running on CH4 fuel, Journal of Power Sources 2009, nr 187, s. 85–89.

Koutcheiko S. i in., Effect of ceria on properties of yttrium-doped strontium titanate ceramics, Ceramics International 2006, nr 32, s. 67–72.

Kim G. i in., SOFC anodes based on LST–YSZ composites and on Y0.04Ce0.48ZrM0.48O2, Journal of The Electrochemical Society 2008, nr 155 (4), B360-B366.

Bochentyn B. i in., Interactions between components of SrTi0.98Nb0.02O3-δ-YSZ and SrTi0.98Nb0.02O3-δ-CeO2 composites, Physica Status Solidi A 2013, nr 210, s. 538–545.