Modelling of Air and Oxy-fuel Combustion in a Circulating Fluidized Bed

Main Article Content

Wojciech Adamczyk


The paper presents the use of a computer model to simulate the process of fluidization in an industrial boiler at Turów power plant. Air and oxy-fuel combustion was modelled for the study, and the effect of the geometrical model’s simplification on the bulk material distribution in the combustion chamber was examined. Numerical simulations were performed using Ansys FLUENT software enhanced with additional user defined functions that were implemented in the calculation procedure. The computer model allowed for the analysis of the effect of solid phase’s volume fraction in the combustion chamber on the heat exchange between the bulk material and the boiler’s heated surfaces. The computer simulation results showed satisfactory consistence with measured data.

Article Details

How to Cite
Wojciech Adamczyk. (2022). Modelling of Air and Oxy-fuel Combustion in a Circulating Fluidized Bed. Acta Energetica, (02), 06–19. Retrieved from


Adamczyk W.P. i in., Modeling oxy-fuel combustion in a 3D circulating fluidized bed using the hybrid Eulere-Lagrange approach, Applied Thermal Engineering 2014(a), Vol. 71, s. 266–275.

Adamczyk W.P. i in., Modeling of particle transport and combustion phenomena in a large-scale circulating fluidized bed boiler using a hybrid Euler-Lagrange approach, Particuology 2014(b), Vol. 16, s. 29–40.

Andrews M.J., O’Rourke P.J., The multifluid particle-in-cell (MP-PIC) method for dense particulate flows, International Journal of Multiphase Flow 1996,Vol. 22(2), s. 379–402. Tab.

Skład spalin na wylocie z komory spalania otrzymany dla różnych składów utleniacza Rys. 5. Profile temperatur w komorze spalania wyznaczone dla różnych składów utleniacza AIR OXY 1 OXY 2 OXY 3 OXY 4 2,7 5,8 2,8 1,7 2,71 13,6 67,1 68,9 70,1 64,8 14,6 21,6 21,3 21,6 25,7 69,1 5,5 7,0 6,6 6,8 W. Adamczyk | Acta Energetica 2/27 (2016) | translation 6–13 19 4. BARRACUDA, 2004. CPFD Software:

Bałdyga J., Orciuch W., Krasiński A., Application of population balance to study complex particulate processes, Czasopismo Techniczne 2008, Vol. 105, s. 13–27.

Bordbar M., Myohanen K., Hyppanen T., Coupling of a radiative heat transfer model and a three-dimensional combustion model for a circulating fluidized bed furnace, Applied Thermal Engineering, 2014.

Chapman S., Cowling S., The mathematical theory of non-uniform gases, Cambridge: Camridge Univ. Press 1970.

Chen L., Zheng S., Ghoniem A.F., Oxy-fuel combustion of pulverized coal: characterization, fundamentals, stabilization and CFD modeling. Progress in Energy and Combustion Science, 2012, s. 156–214.

Crowe C.T., Schwarzkopf J.D., Sommerfeled M., Tsuji Y., Multiphase flows with droplets and particles, Taylor & Francis Group, 2012.

Czakiert T. i in., Oxy-fuel circulating fluidized bed combustion in a small pilot-scale test rig, Fuel Processing Technology 2010, Vol. 91 Issue 11, s. 1617–1623

Edge P. i in., Combustion modelling opportunities and challenges for oxy-coal carbon capture technology, Chemical Engineering Research and Design 2011, Vol. 89, Issue 9, s. 1470–1493.

Gidaspow D., Multiphase Flow and Fluidization, Boston MA., Academic Press 1994.

Johansson R. i in., Account for variations in the H2O to CO2 molar ratio when modelling gaseous radiative heat transfer with the weighted-sum-of-grey-gases model, Combustion and Flame, 2011, s. 893–901.

Jovanovic R. i in., Numerical investigation of influence of homogeneous heterogeneous ignition/combustion mechanisms on ignition point position during pulverized coal combustion in oxygen enriched and recycled flue gases atmosphere, International Journal of Heat and Mass Transfer 2011, Vol. 54, s. 921–931.

Krishnamoorthy G., A new weightedsum- of-gray-gases model for CO2– H2O gas mixtures, International Communications in Heat and Mass Transfer, 2010, s. 1182–1186.

Magnussen B.F., Hjertager B.H., On mathematical models of turbulent combustion with special emphasis on soot formation and combustion, In 16th Symp. on Combustion 1976.

Mazzei L., Marchisio D.L., Lettier P., Direct quadrature method of moments for mixing of inert poly-disperse fluidized powders and the role of numerical diffusion, Industrial & Engineering Chemistry Research 2003, Vol. 49(11), s. 5141–5152.

Myohanen K., Hyppanen T., A threedimensional model frame for modelling combustion and gasification in circulating fluidized bed furnaces, International Journal of Chemical Reactor Engineering 2011, Vol. 9(A15), s. 55.

Snider D., Banerjee S., Heterogeneous gas chemistry in the CPFD Eulerian– Lagrangian numerical scheme (ozone decomposition), Powder Technolog 2010, Vol. 199, s. 100–106.

Snider D.M., O’Rourke P.J., Andrews M.J., Sediment flow in inclined vessels calculated using a multiphase particlein- cell model for dense particle flows, International Journal of Multiphase Flow 1998, Vol. 24, s. 1359–1382.

Syamlal M., Rogers W., O’Brien T.J., MFIX Documentation, National Technical Information Service 1993.

Wischnewski R. i in., Reactive gas–solids flows in large volumes 3D modeling of industrial circulating fluidized bed combustors, Particuology 2010, Vol. 8(1), s. 67–77.

Zhang N. i in., 3D CFD simulation of hydrodynamics of a 150MWe circulating fluidized bed boiler, Chemical Engineering Journal 2010, Vol. 162, s. 821–28.