The problem of thermal unit elasticity under the conditions of dynamic RES development

Main Article Content

T. Kowalczyk, J. Badur, P. Ziółkowski, S. Kornet, K. Banaś, P. J. Ziółkowski, M. Stajnke, M. Bryk

Abstract







The paper is an overview of selected ways of increasing the operational flexibility of steam units, which are predominant in the Polish power system. These studies were prompted by the dynamic changes in the structures of installed capacity and generation output in the National Power System due to a rapid increase in the number of wind turbines in the country. The methods of thermal unit operational flexibility improvement are divided into two groups. The first group comprises solutions with heat and mass storage as well as chemical energy storage. These are solutions to manage the auxiliary load of units regardless of system load. The second group consists of methods for an off-design increase in the safe level of thermal energy machine design stress. The development of numerical tools using complex methods of thermal stress determination, such as Burzyński-Pęcherski’s theory, combined with advanced on-line machine diagnostics, allows for an extension in the operational range of a machine, beyond the original safe operation limit without risk of damage or loss of service life, in other words.












 



Article Details

How to Cite
T. Kowalczyk, J. Badur, P. Ziółkowski, S. Kornet, K. Banaś, P. J. Ziółkowski, M. Stajnke, M. Bryk. (2017). The problem of thermal unit elasticity under the conditions of dynamic RES development. Acta Energetica, (02), 116–121. https://doi.org/10.52710/ae.177
Section
Articles

References

“KSE Report 2015”, PSE SA [online], http://www.pse.pl/index.php?did=2870 [access: 10.02.2017].

S. Lepszy, T. Chmielniak, “Technical and economic analysis of energy storage system using hydrogen underground reservoirs with covering of peak electricity demand”, Conference proceedings CPOTE 2016, Katowice 2016, pp. 14–16.

J. Badur et al., “Pozaprojektowe ograniczenia mające na celu utrzymanie dyspozycyjności turbiny parowej dużej mocy” [Non-design constraints aimed at maintaining the availability of high power steam turbine], Energetyka, Vol. 749, 2016, pp. 652–654.

X. Luo et al., “Overview of current development in electrical energy storage technologies and the application potential in power system operation”, Applied Energy, Vol. 137, 2015, pp. 511–536.

J. Mas, J.M. Rezola, “Tubular design for underwater compressed air energy storage”, Journal of Energy Storage, Vol. 8, 2016, pp. 27–34.

Y.M. Kim, D.G. Shin, D. Favrat, “Operating characteristics of constantpressure compressed air energy storage (CAES) system combined with pumped hydro storage based on energy and exergy analysis”, Energy, Vol. 36, 2011, pp. 6220–6233.

M.J. Reale, “New high efficiency simple cycle gas turbine – GE’s LMS100TM”, General Electric Company, 2004.

J. Badur, T. Kowalczyk, “Poprawa elastyczności bloków parowych poprzez magazynowanie ciepła i masy” [Steam unit’s flexibility improvement by storing heat and mass], Nowa Energia, Vol. 55, 2017, pp. 60–62.

B. Ceran, “Analiza energetyczna hybrydowego systemu wytwórczego z odwracalnym ogniwem paliwowym jako magazynem energii” [Energy Analysis of Hybrid Hydrogen Production System with Reversible Fuel Cell as Energy Storage], Logistka, No. 4, 2015, pp. 8627–8635.

M. Carmo et al., “A comprehensive review on PEM water electrolysis”, International Journal of Hydrogen Energy, Vol. 38, 2011, pp. 4901–4934.

S.A. Grigoriev et al., “High-pressure PEM water electrolysis and corresponding safety issues”, International Journal of Hydrogen Energy, Vol. 36, 2013, pp. 4901–4934.

International Atomic Energy Agency, “Hydrogen Production Using Nuclear Energy”, Vienna, 2013.

M. Lemański, J. Topolski, J. Badur, “Analysis strategies for gas turbine – solid Oxide fuel cell hybrid cycles, Technical, economic and environmental aspects of combined cycles power plants” [in:] “Technical, Economic, and Environmental Aspects of Combined Cycle Power Plants”, edited by Z. Domachowski, Gdańsk University of Technology Printers, 2004, pp. 213–220.

J. Badur et al., “An advanced Thermal-FSI approach to flow heating/ cooling”, Journal of Physics: Conference Series, Vol. 530, 2014, p. 12039.

J. Badur, D. Sławiński, “Rozruchy maszyn energetycznych we współpracy z odnawialnymi źródłami energii” [Starting Energy machinery in inter-action with renewable energy sources], Nowa Energia, Vol. 51, 2016, pp. 78–80.

D. Sławiński, “Rozruch maszyn energetycznych z uwzględnieniem sprężysto-plastycznego dostosowania się konstrukcji” [Starting power machines with consideration of elastic-plastic adaptation of structure], PhD dissertation, IMP PAN, 2016.