Determination of Connection Capacity in the HV Closed Network by the use of a Black-box Optimization – a Case Study

Main Article Content

A. Wędzik

Abstract







The current legislation imposes an obligation on power system operators to regularly determine and publish connection capacities of transmission and distribution network nodes. Currently, the coherent node method is used for determining the connection capacity of transmission and distribution network nodes. However, this method has some limitations that do not allow clearly determining the sought power values, determining the connection capacity of the nodes in the analysed network. This paper proposes a method for determining the connection capacity of nodes in any closed HV network using black-box optimization. Calculations and analyses were performed for a full non-linear model of the Polish NPS. The results obtained show the possibilities of using this method for any configuration of nodes to be analysed, without the need for division into coherent groups. The proposed method shows the possibility of including any limitations relevant to the correct operation of the system in the calculations, such as: allowable voltage levels, allowable line load, maximum short-circuit power in the network nodes or emergency states (n-1) of the system’s operation.












 



Article Details

How to Cite
A. Wędzik. (2017). Determination of Connection Capacity in the HV Closed Network by the use of a Black-box Optimization – a Case Study. Acta Energetica, (01), 131–138. https://doi.org/10.52710/ae.168
Section
Articles

References

The Act of 10 April 1997 Energy Law, Journal of Laws 1997, No. 54, item 348, as amended.

Information about the available connection capacity for generating sources connected to the power network of PGE Dystrybucja SA with a rated voltage exceeding 1 kV (updated for the third quarter of 2016), PGE Dystrybucja SA, Office of Management Network Development, Lublin [online], http://www.pgedystrybucja.pl/dystrybucja/dla-klienta/procedury-przylaczeniowe/informacje-o-dostepnych-mocach-przylaczeniowych [accessed on: 13.03.2017].

M. Bajor, “Bezpieczna praca systemu o ograniczonych zdolnościach przesyłowych w sytuacji wysokiej generacji wiatrowej, Jubileuszowa XV Międzynarodowa Konferencja Naukowa “Aktualne Problemy w Elektroenergetyce” [Safe operation of a system with restricted transfer capacities at high wind generation, the XV Anniversary International Scientific Conference entitled “Current problems in the power industry], Jurata , Vol. 4, 8–10 June 2011, pp. 11-15.

M. Bajor, R. Jankowski, G. Widelski, “Area-Wide Management of a Significant Wind Generation as a Way to Ensure a Safe Grid Operation”, “Acta Energetica”, No. 3 (20), 2014, pp. 17–22.

M. Sobierajski, W. Rojewski, S. Słabosz, “Metoda liniowej optymalizacji dopuszczalnej generacji wiatrowej w węzłach sieci przesyłowej” [Linear optimization of acceptable wind generation in transmission network nodes], “Acta Energetica”, No. 2/7, 2011, pp. 55–55.

H. Kocot., “Zdolności przyłączeniowe węzłów dystrybucyjnej sieci 110 kV” [Connection capacity of 110 kV distribution network nodes], Electrical Power Networks – EPNet 2016, 19–21 September 2016, Szklarska Poręba.

R. Korab, “Zdolności przyłączeniowe krajowej sieci 400 i 220 kV” [Connection capacity of 400 kV and 220 kV national power network”], “Elektroenergetyka: Współczesność i Rozwój” [Power Engineering: Modernity and Development], No. 2–3 (4–5), 2010, pp. 46–54.

P. Kacejko, P. Pijarski, “Ocena możliwości przyłączeniowych krajowej sieci przesyłowej planowanej na lata 2020–2025 w kontekście prawdopodobnych scenariuszy budowy nowych jednostek wytwórczych” [Assessment of connection capacity of the national transmission network planned for 2020–2025 in the context of the likely scenarios of construction of new generating units], “Rynek Energii” [Energy Market], No. 2, 2013, pp. 42–47.

M. Przygrodzki i in., “Ocena zdolności przyłączeniowych Krajowego Systemu Przesyłowego w perspektywie długoterminowej” [Assessment of connection capacity of the National Transmission System in the long term], “Przegląd Elektrotechniczny” , No. 7, 2014, pp. 123–126.

J.A. Momoh, “Electric Power System Applications of Optimization”, Second Edition, CRC Press, Taylor & Francis Group, 2009.

S.A.-H. Soliman, A.-A.H. Mantawy, “Modern Optimization Techniques with Applications in Electric Power Systems”, Springer, doi: 10.1007/978-1-4614-1752-1, 2012.

A. Wędzik, T. Siewierski, M. Szypowski, “The use of the “Black-box” optimization method for determination of connection capacity in electric power grid”, Applied Energy 2017 [in review].

E.F. Davis, “Modeling and optimization of process engineering problems containing black-box systems and noise”, PhD dissertation, New Brunswick, New Jersey, October 2008.

T. Schaul, “Studies in Continuous Black-box Optimization”, Technische Universität München, PhD dissertation, 2011.

Regulation of the Minister of Economy of 4 May 2007 on the detailed conditions of the power system operation, Journal of Laws No. 93, item 623, as amended.

IRiESP Transmission Grid Code. Conditions for using and operating the grid, and planning its development, PSE - Operator S.A., Version 2.0., 15 December 2011 (text in effect as of: 1 May 2016).

IRiESD Distribution Grid Code, PGE S.A., 2013 [consolidated text in effect as of: 1 October 2016].

J. Currie, D.J. Wilson, “OPTI: Lowering the Barrier Between Open Source Optimisers and the Industrial MATLAB User”, Savannah, Georgia, USA, 8–11 January 2012.

M.A. Abramson et al., “The NOMAD project” [online], https://www.gerad.ca/nomad/ [accessed on: 13.03.2017].

C. Audet, J.E. Dennis Jr., “Mesh Adaptive Direct Search Algorithms for Constrained Optimization”, “SIAM Journal on Optimization”, No. 17 (1), doi: 10.1137/040603371, 2006, pp. 188–217.

S. Le Digabel, Algorithm 909: NOMAD: “Nonlinear optimization with the MADS algorithm”, “ACM Transactions on Mathematical Software”, No. 37 (4), 2011, pp. 1–15.