Selected Aspects of Interaction of DC Transmission Systems in Thyristor (LCC HVDC) and Transistor (VSC HVDC) Technologies

Main Article Content

M. Kosmecki, K. Madajewski


The paper presents the problem of interaction between an LCC HVDC system and a VSC HVDC system. It was shown that the separate operation of an LCC HVDC system under low short circuit power conditions is possible and that at this level of short circuit power it is possible to transfer the same active power through the VSC HVDC system operating in parallel, under the condition that the inverter of this connection operates in AC voltage regulation mode. On the other hand, in certain circumstances it is this mode that may cause the LCC system operating conditions to worsen, which indicates the need for a careful analysis of such cases in order to properly adjust the settings of the relevant control systems. It has been shown that the settings of the voltage regulation system and the PLL system under normal short circuit power conditions can improve the process of the LCC HVDC system returning to operation post-disturbance, while in the conditions of reduced short circuit power they make this process more difficult.


Article Details

How to Cite
M. Kosmecki, K. Madajewski. (2018). Selected Aspects of Interaction of DC Transmission Systems in Thyristor (LCC HVDC) and Transistor (VSC HVDC) Technologies. Acta Energetica, (03), 77–85. Retrieved from


Arrillaga J. et al., “Self-Commutating Converters for High Power Applications”, Wiley, 2009.

Kosmecki M., “Praca układu przesyłowego prądu stałego (HVDC) w warunkach obniżonej mocy zwarciowej” [Operation of the DC transmission system (HVDC) under conditions of reduced shortcircuit power], „Aktualne problemy w elektroenergetyce” [Current problems in power engineering] Conference, Jurata 2009.

Kimbark E.W., “Direct Current Transmission”, Wiley-Interscience, 1971.

Madajewski K., “Modele dynamiczne systemu elektroenergetycznego do badania układów przesyłowych prądu stałego” [Dynamic models of the power system for the study of DC transmission systems], Prace Instytutu Energetyki [Papers from the Institute of Power Engineering], Vol. 25, 2003.

Madajewski K., System przesyłowy prądu stałego (HVDC) Polska – Szwecja [DC transmission system (HVDC) Poland – Sweden], Automatyka Elektroenergetyczna, No. 1, 2000.

High-Voltage Direct Current Handbook, Electric Power Research Institute, 1994.

VSC Transmission, CIGRE, Report 269, WG B4.37, 2005.

Commutation Failures Causes and Consequences, CIGRE, Report 103, WG 14.05, 1995.

Guide for planning DC links terminating at ac systems locations having low short-circuit capacities, part I: AC/DC interaction phenomena, CIGRE, Report 68, Work group CIGRE 14.07, Work group IEEE 15.05.05, 1992.

Zhou J.Z., Gole A.M., “Rationalisation and validation of DC power transfer limits for voltage sourced converter based high voltage DC transmission”, IET Generation, Transmission & Distribution, Vol. 10, No. 6, 2016.

Vardikar M. et al., “AC-DC Interaction Study for Upcoming ± 800 kV, 3000 MW Champa Kurukshetra HVDC Link”, Paper No. B4-110, CIGRE, Paris 2016.

De Simone M. et al., “Commutation failures mitigation in multi-infeed network with high renewable”, Paper No. B4-125, CIGRE, Paris 2016.

Systems with Multiple DC Infeed, CIGRE, Report 364, WG B4-41, 2008.

Rauhala T, Laasonen M., Kilter J., “Smooth coordination and management of impact of EstLink 2 transmission testing on electricity markets, power system operations and system technical performance”, Paper No. B4-103, CIGRE, Paris 2016.

Midtsund T. et al., “Experience from a bipolar HVDC system with a Voltage Source Converter and a Line Commutating Converter”, Paper No. B4-129, CIGRE, Paris 2016.

“Plan rozwoju w zakresie zaspokojenia obecnego i przyszłego zapotrzebowania na energię elektryczną na lata 2016–2025” [Development plan for meeting current and future electricity demand in 2016-2025], Polskie Sieci Elektroenergetyczne SA, Konstancin-Jeziorna, 10 November 2015.

Blažauskas N., Włodarski M., Paulauskas S., “Perspektywy rozwoju morskiej energetyki wiatrowej w krajach południowo-wschodniego Bałtyku”, raport z projektu INTERREG IVA South Baltic Offshore Wind Energy Regions [Prospects for the development of offshore wind energy in the countries of the south-east Baltic, report on the INTERREG IVA South Baltic Offshore Wind Energy Regions project], SB OFF.E.R, 2013.

Awad H, Svensson J., Bollen M., “Tuning Software Phase-Locked Loop for series connected Converters”, IEEE Transaction on Power Delivery, Vol. 20, No. 1, 2005.

Bae B., Han B., “Novel structure of three-phase phase-locked loop with robustness against disturbance”, European Transaction on Electrical Power, No. 19, 2009.

Zhou J.Z. et al., “Impact of Short-Circuit Ratio and Phase-Locked-Loop Parameters on the Small-Signal Behavior of a VSC-HVDC Converter”, IEEE Transactions on Power Delivery, Vol. 29, No. 5, 2014.